www.rsc.org/dalton

Double-stranded, $[4 + 4]$ **helicates of Fe(II) and Mn(II) supported by an extended dipyrrolide ligand †**

Stuart D. Reid,*^a* **Alexander J. Blake,***^a* **Walter Köckenberger,***^b* **Claire Wilson** *^a* **and Jason B. Love ****^a*

^a School of Chemistry, University of Nottingham, University Park, Nottingham, UK NG7 2RD. E-mail: jason.love@nottingham.ac.uk; Fax: 44 115 9513563; Tel: 44 115 8467167

^b Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK NG7 2RD

Received 11th September 2003, Accepted 14th October 2003 First published as an Advance Article on the web 17th October 2003

Transamination reactions between Mn and Fe amides and the diiminodipyrromethane H2L result in the spontaneous formation of volatile, double-stranded helicates that exhibit distinct major and minor grooves.

With obvious parallels to the structure of DNA, metal complexes that spontaneously adopt helical structures have a long held fascination.^{1,2} Helicates based on imine ligands are particularly prevalent, the ligands themselves being synthetically versatile and inexpensive,**³** and many supramolecular principles in helicate formation have been elucidated by studying these compounds. We are interested in the controlled formation of bi- and multimetallic compounds, and have shown that Group 1 complexes of donor-elaborated dipyrromethanes (*e.g.* H**2L**) adopt intricate structures in which pyrrole–imine chelation is preferred over pyrrole–pyrrole chelation due to ligand twisting at the *meso*-carbon.⁴ It was therefore clear that H_2L can potentially act as a dinucleating ligand for transition metals, and that the *meso*-twist may encourage helicate formation. Significantly, linked-dipyrromethenes⁵ and also iminopyrroles⁶ have been shown to promote helicate formation. Furthermore, diiminodipyrroles derived from chelating diamines form bimetallic helicates that can structurally reorganise in order to activate O**2**. **7** Here, we report the synthesis and structures of Mn and Fe complexes of **L** and provide insight into a possible mechanism of their formation.

Reaction between H**2L** and equimolar quantities of the diamides $M(THF)_{n}[N(SiMe₃)₂]_{2}$ (M = Mn, Fe) in toluene results in the spontaneous formation of the moderately air stable, 1 : 1 complexes $[M(L)]$ ² in good yields with concurrent elimination of $HN(SiMe₃)₂$ (Scheme 1).[†] In the case of $M = Mn$, elevated temperatures were required to ensure complete reaction (see later). While combustion analyses are consistent with 1 : 1 empirical formulae, mass spectrometry indicates that these compounds are dimeric in the solid state, and that surprisingly little fragmentation occurs under electron impact conditions; the molecular ion of **2** appears at 788 amu and 100% intensity.

Scheme 1 Synthesis of Mn and Fe dipyrrolide complexes: (i) $M(THF)_n[N(SiMe_3)_2]_2$, toluene, $M = Mn$, 80 °C; $M = Fe$, 25 °C; $(ii) \leq 0.5$ eq. Mn(THF)₂[N(SiMe₃)₂]₂, 25 °C.

† Electronic supplementary information (ESI) available: full experimental for **1**, **2**, and **3**, magnetic data for **1** and **2** and crystallographic details for **2** and H**2**[**L**]. See http://www.rsc.org/suppdata/dt/b3/ b311093a/

Furthermore, the dinuclear complexes were found to sublime without degradation at *ca*. 210 $^{\circ}$ C/10⁻² mbar, and crystalline samples of both **1** and **2** suitable for X-ray diffraction studies were grown by vacuum sublimation in sealed tubes. Compounds **1** and **2** were found to be isomorphous (space group $P\bar{1}$), and the bimetallic nature of these compounds was confirmed. In 1 (Fig. 1), \ddagger each manganese is 4-coordinate and adopts a distorted tetrahedral geometry in which the N2–Mn1– N6 angle is considerably more obtuse than expected. Similarly expanded 'tetrahedral' angles have been observed in 4-coordinate Mn and Fe complexes, and generally result from the use of constraining chelating ligands.**⁸** The two metals and ligands are juxtaposed in a ΛΛ configuration, so forming a double stranded, [4 4] helicate; both *P*- and *M*-isomers (resulting from a ∆∆ configuration) are observed in the unit cell and therefore it is likely that **1** exists as a racemic mixture in the bulk material.

Fig. 1 Solid state structure of the double helicate, **1** (50% ellipsoids, hydrogens removed for clarity), with space-filling representations showing the major (left) and minor (right, rotated through 180°) grooves of the *P* enantiomer. Bond lengths (\overline{A}) and angles $(°)$: Mn1–N1 2.162(2), Mn1–N2 2.086(2), Mn1–N5 2.169(2), Mn1–N6 2.086(2), Mn1 ... Mn2 4.751, N1–Mn1–N2 81.11(9), N5–Mn1–N6 81.37(9), N2–Mn1–N6 136.59(9), N1–Mn1–N5 110.30(9).

Usually, $[4 + 4]$ helicates have a symmetrical ligand disposition,² but in the case of 1, face-to-face π-stacking between opposing iminopyrrole fragments results in the formation of distinct major and minor grooves (Fig. 1). Such control over groove formation occurs rarely in helicate synthesis,**⁹** and the presence of this motif may be a contributing factor towards the observed thermal stability and inertness towards O**2** of **1** and **2**.

Surprisingly, and in contrast to what has been previously reported for other iron helicates, **2** was also found to be inert towards CO in solution.**¹⁰** As the space filling representation of **1** shows (Fig. 1), the minor groove sterically obstructs one Mn**²** face towards potential reactive substrates, while access to the Mn**2** unit *via* the more open major groove is inhibited by the impinging *meso*-methyl groups; the interlocked Bu**^t** -groups also provide steric protection to the metal centres. To investigate the prospective redox reactivity of **1** and **2**, cyclic voltametry $(CH_2Cl_2, Bu^n_A NCl)$ was carried out between -2 and $+2$ V, but no well defined reversible or irreversible redox behaviour was exhibited. Lack of oxidation is particularly surprising for Fe^H , and suggests that the necessary geometric reorganisation from tetrahedral Fe^{II} to square planar/octahedral Fe^{III} is arrested by the helical ligand arrangement.**⁷**

The potential of dinuclear complexes of paramagnetic metals to undergo magnetic exchange and lead to finite 1D magnetic chains **¹¹** led us to investigate the magnetism of the helicates **1** and **2**; dc-magnetic susceptibility measurements were carried out between 5 and 300 K (1000 Oe) on powdered samples.† The observed moment for 1 of 8.22 μ_B at 300 K in the solid state is consistent with two magnetically independent, tetra-coordinate Mn^{II} centres, *i.e.* a $2 \times S = 5/2$ spin state ($\mu_{\text{calc}} =$ 8.37 μ_{B} , $g = 2$). Upon cooling, antiferromagnetic coupling following Curie law behaviour is observed. Curie law behaviour is also seen for 2 between 5 and 300 K, with a $2 \times S = 2$ spin state observed at 300 K (μ_{exp} = 7.01, μ_{calc} = 6.93 μ_{B}). Satisfactory fits for both χ and μ were obtained using magnetic susceptibility equations for binuclear complexes, and confirm that no significant intracluster magnetic exchange occurs for either 1 ($g =$ 1.95, $J = -0.23$ cm⁻¹) or **2** ($g = 1.95$, $J = -0.26$ cm⁻¹). This is expected, as both the long intrametal distances (Mn \cdots Mn = 4.751, Fe \cdots Fe = 4.689 Å) and the sp³-hybridised *meso*carbons preclude obvious superexchange pathways.

If the stoichiometry between H_2L and $Mn[N(SiMe_3)_2]$ is mismatched $(6:1)$ and the reaction is conducted at 25 °C, the new, monometallic product Mn(**L**H)**² 3** is formed in preference to bimetallic **1**. Yellow–brown crystals of **3** that were suitable for X-ray crystallography were grown from a cold hexane–THF mixture and were separated by hand from colourless crystals of $H₂L$; † the similarity of solubility between 3 and $H₂L$ has so far precluded the satisfactory isolation of **3** in bulk. The solid state structure of **3** (Fig. 2)‡ shows that Mn1 is symmetrically ligated by two diiminodipyrrolide ligands *via* two pyrrolic and one imino nitrogen of each ligand, so forming a distorted octahedral geometry at the metal with ∆-configuration (both ∆ and Λ enantiomers are seen in the unit cell, and implies that **3** exists as a racemic mixture).

This coordination mode to Mn^{II} requires each ligand to be monodeprotonated, and as such has promoted a pyrrole–imine to azafulvalene–amine tautomerisation (Fig. 2); the hydrogen on N4 was located from the difference Fourier map. This is in direct contrast to the structure of H**2**[**L**] in which the acidic hydrogens are located on the pyrrole nitrogens.† Thus, **3** represents a possible intermediate to the double helicate **1** *via* further transamination of amino N4 with a second equivalent of Mn[N(SiMe**3**)**2**]**2**.

We have shown that the donor-elaborated dipyrrolide **L** can support divalent, dinuclear Mn and Fe, and that these complexes adopt double-stranded, helical structures with distinct molecular clefts. The mononuclear Mn complex **3** provides a route to the formation of dinuclear **1** *via* an eneamine tautomerisation mechanism, and represents a basis to mixed-metal helicates. We are at present investigating the reactivity of **1** and **2** towards small molecules and the synthesis of enantiomerically pure helicates by the incorporation of a chiral imine. We thank the Royal Society (JBL, University Research Fellowship), the University of Nottingham and the EPSRC for their support.

Fig. 2 Solid state structure of the bis(dipyrrolide)Mn complex, **3** (∆ enantiomer shown), and a pictorial representation of the iminopyrrolide bonding. Bond lengths (A) and angles $(°)$: Mn1–N1 2.4863(15), Mn1–N2 2.1390(15), Mn1–N3 2.3659(15), N1–Mn1–N2 72.46(5), N2–Mn1–N3 82.28(5), N2–Mn1–N2A 172.44(8).

Notes and references

‡ *Crystal data*: **1**: C**42**H**60**Mn**2**N**8**, triclinic, *a* = 11.099(2), *b* = 13.738(2), *c* = 14.997(2) Å, *a* = 74.705(2), *β* = 79.934(2), *γ* = 71.465(2) °, *U* = $2081.1(6)$ Å³, $T = 150(2)$ K, space group $P\overline{1}$, $Z = 2$, μ (Mo-K α) = 0.646 mm^{-1} , 17924 reflections measured, 9604 unique ($R_{int} = 0.048$) which were used in all calculations. The final $wR(F^2)$ was 0.1360 (all data). 3: $C_{50}H_{78}MnN_8O_2$, monoclinic, $a = 17.635(2)$, $b = 14.208(2)$, $c = 21.382(2)$ \hat{A} , $a = 90$, $\beta = 110.152(2)$, $\gamma = 90^{\circ}$, $U = 5029.5(10)$ \hat{A}^3 , $T = 150(2)$ K, space group *C*2/*c*, $Z = 4$, μ (Mo-K α) = 0.307 mm⁻¹, 17490 reflections measured, 5926 unique ($R_{\text{int}} = 0.0024$) which were used in all calculations. The final $wR(F^2)$ was 0.1341 (all data). CCDC reference numbers 219487–219490. See http://www.rsc.org/suppdata/dt/b3/b311093a/ for crystallographic data in CIF or other electronic format.

- 1 J. W. Steed and J. L. Atwood, *Supramolecular Chemistry*, John Wiley & Sons Ltd, 2000; C. Piguet, G. Bernardinelli and G. Hopfgartner, *Chem. Rev.*, 1997, **97**, 2005.
- 2 M. Albrecht, *Chem. Rev.*, 2001, **101**, 3457.
- 3 M. J. Hannon, C. L. Painting, A. Jackson, J. Hamblin and W. Errington, *Chem. Commun.*, 1997, 1807.
- 4 J. B. Love, A. J. Blake, C. Wilson, S. D. Reid, A. Novak and P. B. Hitchcock, *Chem. Commun.*, 2003, 1682.
- 5 Y. Zhang, A. Thompson, S. J. Rettig and D. Dolphin, *J. Am. Chem. Soc.*, 1998, **120**, 13537; A. Thompson and D. Dolphin, *Org. Lett.*, 2000, **2**, 1315; A. Thompson and D. Dolphin, *J. Org. Chem.*, 2000, **65**, 7870.
- 6 Z. Wu, Q. Chen, S. Xiong, B. Xin, Z. Zhao, L. Jiang and J. S. Ma, *Angew. Chem. Int. Ed.*, 2003, **42**, 3271.
- 7 F. Franceschi, G. Guillemot, E. Solari, C. Floriani, N. Re, H. Birkedal and P. Pattison, *Chem. Eur. J.*, 2001, **7**, 1468.
- 8 M. Vázquez, M. R. Bermejo, M. Fondo, A. M. García-Deibe, J. Sanmartín, R. Pedrido, L. Sorace and D. Gatteschi, *Eur. J. Inorg. Chem.*, 2003, 1128; J. B. Love, P. A. Salyer, A. S. Bailey, C. Wilson, A. J. Blake, E. S. Davies and D. J. Evans, *Chem. Commun.*, 2003, 1390.
- 9 M. J. Hannon, C. L. Painting and N. W. Alcock, *Chem. Commun.*, 1999, 2023; M. Vázquez, M. R. Bermejo, M. Fondo, A. M. González, J. Mahía, L. Sorace and D. Gatteschi, *Eur. J. Inorg. Chem.*, 2001, 1863; V. Amendola, L. Fabbrizzi, L. Linati, C. Mangano, P. Pallavicini, V. Pedrazzini and M. Zema, *Chem. Eur. J.*, 1999, **5**, 3679; G. C. van Stein, G. van Koten, K. Vrieze, C. Brevard and A. L. Spek, *J. Am. Chem. Soc.*, 1984, **106**, 4486.
- 10 H. Kawaguchi and T. Matsuo, *Chem. Commun.*, 2002, 958.
- 11 C. J. Matthews, S. T. Onions, G. Morata, L. J. Davies, S. L. Heath and D. J. Price, *Angew. Chem. Int. Ed.*, 2003, **42**, 3166; G. Aromí, P. Carrero Berzal, P. Gamez, O. Roubeau, H. Kooijman, A. L. Spek, W. L. Driessen and J. Reedijk, *Angew. Chem. Int. Ed.*, 2001, **40**, 3444.